Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is



Given below are two statements:
Statement I: All the pairs of molecules \((\mathrm{PbO}, \mathrm{PbO_2}); (\mathrm{SnO}, \mathrm{SnO_2})\) and \((\mathrm{GeO}, \mathrm{GeO_2})\) contain amphoteric oxides.
Statement II: \(\mathrm{AlCl_3}, \mathrm{BH_3}, \mathrm{BeH_2}\) and \(\mathrm{NO_2}\) all have incomplete octet.
In the light of the above statements, choose the correct option.
