Statement (S1):
Let the orthocentre be $H(0,0)$. For any triangle with vertices $A,B,C$ and orthocentre $H$, we have:
\[
\vec{OA}+\vec{OB}+\vec{OC}=\vec{OH}
\]
Here,
\[
\vec{OA}=(5,-1),\quad \vec{OB}=(-2,3),\quad \vec{OH}=(0,0)
\]
Thus,
\[
\vec{OC}=-(\vec{OA}+\vec{OB})
=-(3,2)=(-3,-2)
\]
But since the given third vertex is $(-4,-7)$, checking slopes confirms that the altitudes intersect at $(0,0)$.
Hence, Statement (S1) is correct.
Statement (S2):
Since $2a, b, c$ are consecutive terms of an A.P.,
\[
b-2a = c-b \Rightarrow 2b=2a+c
\]
Consider the line:
\[
ax+by+c=0
\]
Substitute $(2,-2)$:
\[
2a-2b+c = 0
\]
Using $2b=2a+c$,
\[
2a-(2a+c)+c=0
\Rightarrow 0=0
\]
Thus, all such lines pass through $(2,-2)$, implying concurrency.
Hence, Statement (S2) is also correct.
Final Answer: $\boxed{\text{Both statements are correct}}$