The area enclosed by a parametric curve \( x = f(\theta) \) and \( y = g(\theta) \) is given by the formula:
\[
A = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left( x(\theta) \, \frac{dy}{d\theta} - y(\theta) \, \frac{dx}{d\theta} \right) \, d\theta.
\]
Here, \( x = 3 \cos \theta \) and \( y = 5 \sin \theta \), with \( \theta \) ranging from \( 0 \) to \( 2\pi \).
Step 1: Compute the derivatives of \( x \) and \( y \):
\[
\frac{dx}{d\theta} = -3 \sin \theta, \quad \frac{dy}{d\theta} = 5 \cos \theta.
\]
Step 2: Substitute into the area formula:
\[
A = \frac{1}{2} \int_0^{2\pi} \left( 3 \cos \theta \cdot 5 \cos \theta - 5 \sin \theta \cdot (-3 \sin \theta) \right) \, d\theta
\]
Simplifying:
\[
A = \frac{1}{2} \int_0^{2\pi} \left( 15 \cos^2 \theta + 15 \sin^2 \theta \right) \, d\theta
\]
\[
A = \frac{1}{2} \int_0^{2\pi} 15 \left( \cos^2 \theta + \sin^2 \theta \right) \, d\theta.
\]
Since \( \cos^2 \theta + \sin^2 \theta = 1 \), the integral becomes:
\[
A = \frac{1}{2} \int_0^{2\pi} 15 \, d\theta
\]
\[
A = \frac{1}{2} \cdot 15 \cdot 2\pi = 15\pi.
\]
Thus, the area enclosed by the curve is \( 15\pi \).
Therefore, the correct answer is option (A).