Step 1: Find the points of intersection. \[ \sqrt{x} = 8x^2 \Rightarrow x = 0 { or } \sqrt{x} = 8x^2 \Rightarrow 1 = 8x^{3/2} \Rightarrow x = \left( \frac{1}{8} \right)^{2/3} \] Let’s call \( a = 0 \) and \( b = \left( \frac{1}{8} \right)^{2/3} \)
Step 2: Area between the curves. \[ {Area} = \int_{a}^{b} \left( \sqrt{x} - 8x^2 \right) dx \] \[ = \int_{0}^{\left( \frac{1}{8} \right)^{2/3}} \left( x^{1/2} - 8x^2 \right) dx = \left[ \frac{2}{3}x^{3/2} - \frac{8}{3}x^3 \right]_0^{\left( \frac{1}{8} \right)^{2/3}} \] \[ x = \left( \frac{1}{8} \right)^{2/3} = 2^{-4/3} \Rightarrow x^{3/2} = 2^{-2},\ x^3 = 2^{-4} \] \[ {Area} = \frac{2}{3} \cdot \frac{1}{4} - \frac{8}{3} \cdot \frac{1}{16} = \frac{1}{6} - \frac{1}{6} = \frac{1}{6} - \frac{1}{6} = \boxed{0.343} \]
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.
An electricity utility company charges ₹7 per kWh. If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?