We need to calculate the area under the curve:
\[
\int_0^{3\pi} \sin\left(\frac{x}{3}\right) \, dx
\]
For the given function:
\[
f(x) = \sin\left(\frac{x}{3}\right)
\]
The integral becomes:
\[
\int_0^{3\pi} \sin\left(\frac{x}{3}\right) \, dx
\]
Using the substitution \( u = \frac{x}{3} \), so \( du = \frac{dx}{3} \) or \( dx = 3du \). When \( x = 0, u = 0 \) and when \( x = 3\pi, u = \pi \). The integral becomes:
\[
3 \int_0^\pi \sin(u) \, du = 3 \left[ -\cos(u) \right]_0^\pi
\]
\[
= 3 \left[ -\cos(\pi) + \cos(0) \right] = 3 \left[ 1 + 1 \right] = 6
\]
Thus, the area is 6 square units.