We are given the function \( f(x) = x^3 - 7x^2 + 15 \). We need to find the approximate value of \( f(5.001) \).
Step 1: Use the first-order approximation
The first-order approximation for \( f(x) \) near \( x = 5 \) is:
\[
f(5.001) \approx f(5) + f'(5) \cdot 0.001
\]
Step 2: Calculate \( f(5) \) and \( f'(x) \)
First, find \( f(5) \):
\[
f(5) = 5^3 - 7 \cdot 5^2 + 15 = 125 - 175 + 15 = -35
\]
Next, find the derivative \( f'(x) \):
\[
f'(x) = 3x^2 - 14x
\]
At \( x = 5 \):
\[
f'(5) = 3 \cdot 5^2 - 14 \cdot 5 = 75 - 70 = 5
\]
Step 3: Approximate \( f(5.001) \)
Now, using the approximation:
\[
f(5.001) \approx f(5) + f'(5) \cdot 0.001 = -35 + 5 \cdot 0.001 = -34.995
\]
Thus, the approximate value of \( f(5.001) \) is \( -34.995 \).