Given: \( \frac{dy}{dx} = 1 + xy \), with \( y(0) = 1 \)
Picard’s method constructs successive approximations:
\[
y_0(x) = 1
\]
\[
y_1(x) = 1 + \int_0^x (1 + t \cdot y_0(t)) dt = 1 + \int_0^x (1 + t) dt = 1 + x + \frac{x^2}{2}
\]
\[
y_2(x) = 1 + \int_0^x (1 + t \cdot y_1(t)) dt = 1 + \int_0^x \left(1 + t(1 + t + \frac{t^2}{2})\right) dt
\]
\[
= 1 + \int_0^x \left(1 + t + t^2 + \frac{t^3}{2} \right) dt = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{8}
\]
Thus, the second iteration gives:
\[
y \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{8} + \dots
\]