Given: Initial angular velocity ω0 = 20 rad s-1, final angular velocity ω = 50 rad s-1, time t = 10 s.
First, calculate the angular acceleration α using ω = ω0 + α t:
50 = 20 + α (10), so α = 3 rad s-2.
Next, find the angular displacement θ using θ = ω0 t + ½ α t2:
θ = (20)(10) + ½(3)(10)2 = 200 + 150 = 350 radians.
Finally, convert θ to rotations:
Number of rotations = θ / (2π) = 350 / (2×3.14) ≈ 55.73 rotations.