The angle \( \theta \) between two planes is given by the formula:
\[
\cos \theta = \frac{| \vec{N_1} \cdot \vec{N_2} |}{|\vec{N_1}| |\vec{N_2}|}
\]
where \( \vec{N_1} \) and \( \vec{N_2} \) are the normal vectors of the two planes.
For the first plane \( 2x + y - 2z = 5 \), the normal vector \( \vec{N_1} = (2, 1, -2) \).
For the second plane \( 3x - 6y - 2z = 7 \), the normal vector \( \vec{N_2} = (3, -6, -2) \).
Now, compute the dot product of the two normal vectors:
\[
\vec{N_1} \cdot \vec{N_2} = 2 \times 3 + 1 \times (-6) + (-2) \times (-2) = 6 - 6 + 4 = 4
\]
Next, compute the magnitudes of the normal vectors:
\[
|\vec{N_1}| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3
\]
\[
|\vec{N_2}| = \sqrt{3^2 + (-6)^2 + (-2)^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7
\]
Now, substitute these values into the formula for \( \cos \theta \):
\[
\cos \theta = \frac{|4|}{3 \times 7} = \frac{4}{21}
\]
Thus, the angle between the planes is:
\[
\theta = \cos^{-1} \left( \frac{4}{21} \right)
\]
Hence, the correct answer is:
\[
\boxed{\cos^{-1} \left( \frac{4}{21} \right)}
\]