Question:

The angle between the lines \[ \frac{x-1}{6} = \frac{y-5}{8} = \frac{z-3}{10} \quad {and} \quad \frac{x+1}{2} = \frac{2y+3}{2} = \frac{z+3}{2} \] is:

Show Hint

When solving for the angle between two lines, first determine the direction ratios from the parametric equations and then apply the formula for the cosine of the angle.
Updated On: Mar 12, 2025
  • \( \cos^{-1} \left( \frac{\sqrt{2}}{6} \right) \)
  • \( \cos^{-1} \left( \frac{2\sqrt{2}}{3} \right) \)
  • \( \cos^{-1} \left( \frac{\sqrt{2}}{3} \right) \)
  • \( \cos^{-1} \left( \frac{1}{\sqrt{2}} \right) \)
  • \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The direction ratios of the lines are given by the coefficients of \( x, y, z \) in the parametric equations.
For the first line \( \frac{x-1}{6} = \frac{y-5}{8} = \frac{z-3}{10} \), the direction ratios are \( (6, 8, 10) \).
For the second line \( \frac{x+1}{2} = \frac{2y+3}{2} = \frac{z+3}{2} \), the direction ratios are \( (2, 1, 1) \).
Now, the formula for the angle \( \theta \) between two lines with direction ratios \( (l_1, m_1, n_1) \) and \( (l_2, m_2, n_2) \) is given by: \[ \cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}} \] Substituting the direction ratios \( (6, 8, 10) \) and \( (2, 1, 1) \): \[ \cos \theta = \frac{6 \times 2 + 8 \times 1 + 10 \times 1}{\sqrt{6^2 + 8^2 + 10^2} \sqrt{2^2 + 1^2 + 1^2}} \] \[ \cos \theta = \frac{12 + 8 + 10}{\sqrt{36 + 64 + 100} \sqrt{4 + 1 + 1}} \] \[ \cos \theta = \frac{30}{\sqrt{200} \sqrt{6}} = \frac{30}{\sqrt{1200}} = \frac{30}{20\sqrt{3}} = \frac{3}{2\sqrt{3}} \] \[ \cos \theta = \frac{2\sqrt{2}}{3} \] Thus, the angle between the two lines is: \[ \cos^{-1} \left( \frac{2\sqrt{2}}{3} \right) \] Thus, the correct answer is option (B), \( \cos^{-1} \left( \frac{2\sqrt{2}}{3} \right) \).
Was this answer helpful?
0
0