A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
Escape speed is the minimum speed, which is required by the object to escape from the gravitational influence of a plannet. Escape speed for Earth’s surface is 11,186 m/sec.
The formula for escape speed is given below:
ve = (2GM / r)1/2
where ,
ve = Escape Velocity
G = Universal Gravitational Constant
M = Mass of the body to be escaped from
r = Distance from the centre of the mass