The acceleration due to gravity on the surface of moon is 1.7 ms-2.What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s? (g on the surface of earth is 9.8 ms-2
Acceleration due to gravity on the surface of moon, g'=1.7 ms-2
Acceleration due to gravity on the surface of earth, g=9.8 ms-2
Time period of a simple pendulum on earth, T=3.5 s
\(T=2π\sqrt\frac{l}{g}\)
Where,
l is the length of the pendulum
\(∴l=\frac{T^2}{(2π)^2}×g\)
\(=\frac{(3.5)^2}{4×(3.14)^2}×9.8 m\)
The length of the pendulum remains constant.
On moon’s surface, time period, \(T'=2π\sqrt\frac{l}{g'}\)
\(=2π\sqrt\frac{\frac{(3.5)^2}{4×(3.14)^2}×9.8}{1.7}=8.4 s\)
Hence, the time period of the simple pendulum on the surface of moon is 8.4 s.
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.