The molar absorption coefficient \( \epsilon \) can be calculated using Beer-Lambert's law:
\[
A = \epsilon \cdot c \cdot l
\]
where:
- \( A = 0.75 \) (absorbance),
- \( c = 5 \times 10^{-4} \, M \) (concentration),
- \( l = 1 \, \text{cm} \) (path length).
Rearranging to solve for \( \epsilon \):
\[
\epsilon = \frac{A}{c \cdot l} = \frac{0.75}{(5 \times 10^{-4}) \times 1} = 1500 \, \text{M}^{-1} \text{cm}^{-1}
\]
Thus, the molar absorption coefficient is \( 1500 \, \text{M}^{-1} \text{cm}^{-1} \).