The distance between the slits is given as:
\[
d = 0.8 \, \text{mm} \pm 0.04 \, \text{mm}.
\]
Thus, the extreme values are:
\[
d = 0.84 \, \text{mm} \quad \text{and} \quad d = 0.76 \, \text{mm}.
\]
The fringe position is given by:
\[
y = \frac{n \lambda D}{d},
\]
where \( n = 8, \lambda = 6 \times 10^{-7} \, \text{m}, D = 1 \, \text{m} \).
The separation between the extreme positions is:
\[
\Delta y = n \lambda D \left( \frac{1}{d_{\text{min}}} - \frac{1}{d_{\text{max}}} \right).
\]
Substitute the values:
\[
\Delta y = 8 * 6 \times 10^{-7} * 1 \cdot \left( \frac{1}{0.76 \times 10^{-3}} - \frac{1}{0.84 \times 10^{-3}} \right).
\]
Simplify:
\[
\Delta y = 601.50 \, \mu\text{m}.
\]