| Atomic Number | Ionization Enthalpy (kJ/mol) | ||
I1 | I2 | I3 | |
| n | 1681 | 3374 | 6050 |
| n+1 | 2081 | 3952 | 6122 |
| n+2 | 469 | 4562 | 6910 |
| n+3 | 738 | 1451 | 7733 |
Since I.E. of Na is 495.8 kJ molβ1 , so (n + 2) should be 11.
n + 2 = 11, So n = 9
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: