Non-polar molecules have a symmetrical arrangement of atoms that results in no net dipole moment. In the given list: - \(CO_2\) is linear and symmetrical, so it is non-polar. - \(H_2\) is diatomic and non-polar because it is composed of identical atoms. - \(CH_4\) has a tetrahedral geometry with symmetrical bond distribution, making it non-polar. - \(BF_3\) has a trigonal planar geometry, which is symmetrical and therefore non-polar.
Other molecules like HF, \(H_2O\), \(SO_2\), \(NH_3\), HCl, and \(CHCl_3\) are polar due to their asymmetrical shapes or differences in electronegativity. Therefore, there are four non-polar molecules in the list.
The Correct answer is: 4
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]