The equilibrium constant expression \( K_c \) for the formation of ammonia (\( \text{NH}_3 \)) from nitrogen (\( \text{N}_2 \)) and hydrogen (\( \text{H}_2 \)) is:
\(K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3}\)
Substituting the given concentrations:
\(K_c = \frac{(1.5 \times 10^{-2})^2}{(2 \times 10^{-2})(3 \times 10^{-2})^3}\)
Calculating the result:
\(K_c = 417\)
The Correct Answer is:417
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: