
\(\frac{\Delta T}{R_{eq}} = I = \frac{\left(120\right)5}{8R} = \frac{120\times5}{8R}\)
\(\Delta T_{PQ} = \frac{120 \times5}{8R} \times\frac{3}{5}R = \frac{360}{8} = 45^{\circ}C\)
\(\text{Hence, the correct option is (D):}\) \(45\degree\;C\)
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
|---|---|---|---|
| (Type of Fouling) | (Fouling Mechanism) | ||
| A | Precipitation | IV | Precipitation of dissolved substances... |
| B | Freezing | III | Solidification of Liquid components... |
| C | Particulate | I | Accumulation of fine particles suspended... |
| D | Corrosion | II | Heat transfer surface reacts with ambient... |
Identify the evaporator 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

It is defined as the movement of heat across the border of the system due to a difference in temperature between system and its surroundings.
Heat can travel from one place to another in several ways. The different modes of heat transfer include:
