\( -\tan\left(\frac{1}{x}\right) + \frac{1}{x} + c = ? \)
Derivative of the given function:
We are asked to find the derivative of the function:
\[
f(x) = -\tan\left(\frac{1}{x}\right) + \frac{1}{x} + c
\]
Step 1: Apply the chain rule:
The derivative of \( -\tan\left(\frac{1}{x}\right) \) is:
\[
\frac{d}{dx} \left[-\tan\left(\frac{1}{x}\right)\right] = -\sec^2\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right)
\]
The derivative of \( \frac{1}{x} \) is:
\[
\frac{d}{dx} \left(\frac{1}{x}\right) = -\frac{1}{x^2}
\]
The derivative of the constant \( c \) is 0.
Step 2: Combine the results:
Now, combining all the terms, we get:
\[
\frac{d}{dx} \left[-\tan\left(\frac{1}{x}\right) + \frac{1}{x} + c\right] = \sec^2\left(\frac{1}{x}\right) \cdot \frac{1}{x^2} - \frac{1}{x^2}
\]
Simplifying the expression:
\[
= \frac{\sec^2\left(\frac{1}{x}\right) - 1}{x^2}
\]
Using the identity \( \sec^2(\theta) - 1 = \tan^2(\theta) \), we get:
\[
= \frac{\tan^2\left(\frac{1}{x}\right)}{x^2}
\]
Final Answer:
Therefore, the derivative is:
\[
\frac{\tan^2\left(\frac{1}{x}\right)}{x^2}
\]
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Evaluate the integral: \[ \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \,dx= \]
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C