Use the tangent addition formula
\(\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\,\tan\beta}\).
Take \(\alpha=\tan^{-1}x,\ \beta=\tan^{-1}y\). Then
\(\tan(\alpha+\beta)=\dfrac{x+y}{1-xy}\).
Apply \(\tan^{-1}\): \(\alpha+\beta=\tan^{-1}x+\tan^{-1}y\).