Question:

\(\tan^{-1}\!\left(\dfrac{x+y}{1-xy}\right)=\ \ ?\)

Show Hint

Spot $\dfrac{x+y}{1-xy}$ $\Rightarrow$ it is $\tan(\alpha+\beta)$ in disguise.
  • \(\sin^{-1}(x+y)\)
  • \(\cos^{-1}(x+y)\)
  • \(\tan^{-1}(x+y)\)
  • \(\tan^{-1}x+\tan^{-1}y\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Use the tangent addition formula \(\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\,\tan\beta}\). Take \(\alpha=\tan^{-1}x,\ \beta=\tan^{-1}y\). Then \(\tan(\alpha+\beta)=\dfrac{x+y}{1-xy}\). Apply \(\tan^{-1}\): \(\alpha+\beta=\tan^{-1}x+\tan^{-1}y\).
Was this answer helpful?
0
0