\(I=tan^{-1}\sqrt{\frac{1-x}{1+x}}\)
\(Let\space x=cosθ⇒dx=-sinθdθ\)
\(I=\int tan^{-1}\sqrt{\frac{1-cosθ}{1+cosθ}}(-sinθdθ)\)
\(=-\int tan^{-1}\sqrt{\frac{2sin^{2}\frac{θ}{2}}{2cos^{2}\frac{θ}{2}}}sinθdθ\)
\(=-\int tan^{-1}tan\frac{θ}{2}.sinθdθ\)
\(=-\frac{1}{2}∫θ.sinθdθ\)
\(=-\frac{1}{2}[θ.(-cosθ)-∫1.(-cosθ)dθ]\)
\(=-\frac{1}{2}[-θcosθ+sinθ]\)
\(=+\frac{1}{2}θcosθ-\frac{1}{2}sinθ\)
\(=\frac{1}{2}cos^{-1}x.x-\frac{1}{2}\sqrt{1-x^{2}}+C\)
\(=\frac{x}{2}cos^{-1}x-\frac{1}{2}\sqrt{1-x^{2}}+C\)
\(=\frac{1}{2}(xcos^{-1}x-\sqrt{1-x^{2}})+C\)
Reactant ‘A’ underwent a decomposition reaction. The concentration of ‘A’ was measured periodically and recorded in the table given below:
Based on the above data, predict the order of the reaction and write the expression for the rate law.
Balance Sheet of Atharv and Anmol as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Fixed Assets | 14,00,000 | |
| Atharv | 8,00,000 | Stock | 4,90,000 |
| Anmol | 4,00,000 | Debtors | 5,60,000 |
| General Reserve | 3,50,000 | Cash | 10,000 |
| Creditors | 9,10,000 | ||
| Total | 24,60,000 | Total | 24,60,000 |