Given: - Electric field: \( E = 2 \times 10^4 \, \text{N/C} \) - Mass of the particle: \( m = 2 \, \text{g} = 2 \times 10^{-3} \, \text{kg} \) - Length of thread: \( L = 20 \, \text{cm} = 0.2 \, \text{m} \) - Distance of particle from the wall: \( d = 10 \, \text{cm} = 0.1 \, \text{m} \) - Acceleration due to gravity: \( g = 10 \, \text{m/s}^2 \)
The charged particle experiences three forces: 1. Gravitational force (\( F_g = mg \)) 2. Tension (\( T \)) in the thread 3. Electric force (\( F_e = qE \))
For equilibrium, the components of forces must balance:
\[ F_e = T \sin\theta \quad \text{and} \quad F_g = T \cos\theta \]
where \( \theta \) is the angle between the thread and the vertical. From the geometry of the problem:
\[ \sin\theta = \frac{d}{L} = \frac{0.1}{0.2} = 0.5 \quad \text{and} \quad \cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - 0.5^2} = \sqrt{0.75} = \frac{\sqrt{3}}{2} \]
From the vertical equilibrium condition:
\[ T \cos\theta = mg \]
Substituting the values:
\[ T \times \frac{\sqrt{3}}{2} = 2 \times 10^{-3} \times 10 \] \[ T \times \frac{\sqrt{3}}{2} = 0.02 \] \[ T = \frac{0.02 \times 2}{\sqrt{3}} = \frac{0.04}{\sqrt{3}} \, \text{N} \]
Using the horizontal equilibrium condition:
\[ F_e = T \sin\theta \] \[ qE = T \times 0.5 \]
Substituting the known values:
\[ q \times 2 \times 10^4 = \frac{0.04}{\sqrt{3}} \times 0.5 \] \[ q \times 2 \times 10^4 = \frac{0.02}{\sqrt{3}} \] \[ q = \frac{0.02}{\sqrt{3} \times 2 \times 10^4} \] \[ q = \frac{1}{\sqrt{3}} \times 10^{-6} \, \text{C} \]
Converting to microcoulombs:
\[ q = \frac{1}{\sqrt{3}} \, \mu\text{C} \]
The charge is given as \( \frac{1}{\sqrt{x}} \, \mu\text{C} \). By comparison:
\[ x = 3 \]
The value of \( x \) is 3.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: