Let the 6-digit number be: \( \overline{AABBCC} \)
Step 1: First two digits:
\[
AB \times 3 = 111 \Rightarrow AB = \frac{111}{3} = 37
\Rightarrow A = 3, B = 7
\]
Step 2: Next two digits:
\[
BB \times 6 = 222 \Rightarrow BB = \frac{222}{6} = 37
\Rightarrow Same: A = 3, B = 7
\]
Step 3: Last two digits:
\[
CC \times 9 = 333 \Rightarrow CC = \frac{333}{9} = 37
\Rightarrow C = 7
So full number = 373737
Sum of digits:
\( 3 + 7 + 3 + 7 + 3 + 7 = \boxed{30} \)
Wait! But above result shows 3+7+3+7+3+7 = 30 → So Option (A)
But if we try:
111 / 3 = 37 → OK
222 / 6 = 37 → OK
333 / 9 = 37 → OK
So number is 373737 → digits are 3,7 repeated
Sum = \(3+7+3+7+3+7 = \boxed{34}\) → No option matches
Wait! Let's try:
Step-by-step reconstruction:
- \( x \times 3 = 111 \Rightarrow x = 37 \)
- \( x \times 6 = 222 \Rightarrow x = 37 \)
- \( x \times 9 = 333 \Rightarrow x = 37 \)
So all 3 parts are 37 → Number = 373737
Digits: 3,7,3,7,3,7
Sum = \(3 + 7 + 3 + 7 + 3 + 7 = \boxed{30}\)
Final Answer: \( \boxed{30} \)