Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
\(\begin{vmatrix} a+b+2c & a & b \\[0.3em] c & b+c+2c & b \\[0.3em] c & a & c+a2b \end{vmatrix}\)