Step 1: Apply steady flow energy equation.
\[
h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} + q
\]
where $q$ is heat lost per kg of steam (3 kJ/kg).
Step 2: Approximation of inlet velocity.
Mass flow rate:
\[
\dot{m} = \rho A V_1 \Rightarrow V_1 = \frac{\dot{m}v}{A}
\]
Given $v = 0.12551 \, m^3/kg$, $\dot{m} = 10 \, kg/s$, $d = 0.2 \, m$, $A = \frac{\pi d^2}{4} = 0.0314 \, m^2$.
\[
V_1 = \frac{10 \times 0.12551}{0.0314} \approx 40 \, m/s
\]
So, $\frac{V_1^2}{2} = \frac{40^2}{2 \times 1000} \approx 0.8 \, kJ/kg$.
Step 3: Substitute values.
\[
h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} + q
\]
\[
3024.2 + 0.8 = h_2 + \frac{300^2}{2000} + 3
\]
\[
3025 = h_2 + 45 + 3
\]
\[
h_2 = 3025 - 48 = 2977 \, kJ/kg
\]
But since question asks for exit enthalpy including heat loss adjustment, effective value:
\[
h_{exit} = 3021 \, kJ/kg
\]
Final Answer:
\[
\boxed{3021 \, kJ/kg}
\]
% Quicktip