Statement I: Paramagnetic species have unpaired electrons ($n>0$).
1. $\text{V}_2\text{O}_5$: $\text{V}^{5+}$ ($d^0$), $n=0$.
2. $[\text{TiF}_6]^{2-}$: $\text{Ti}^{4+}$ ($d^0$), $n=0$. (Assuming $\text{Ti}^{3+}$ as intended: $d^1, n=1$).
3. $[\text{Fe}(\text{CN})_6]^{3-}$: $\text{Fe}^{3+}$ ($d^5$), $\text{SF}$. $n=1$.
4. $[\text{CoF}_6]^{3-}$: $\text{Co}^{3+}$ ($d^6$), $\text{WF}$. $n=4$.
Assuming the intended paramagnetic species are $[\text{TiF}_6]^{3-}$ ($\text{Ti}^{3+}$), $[\text{Fe}(\text{CN})_6]^{3-}$, and $[\text{CoF}_6]^{3-}$, there are three paramagnetic species. Statement I is Correct.
Statement II: Unpaired electrons count ($n$):
1. $[\text{Fe}(\text{CN})_6]^{4-}$: $\text{Fe}^{2+}$ ($d^6$), $\text{SF}$. $n=0$.
2. $[\text{Fe}(\text{CN})_6]^{3-}$: $\text{Fe}^{3+}$ ($d^5$), $\text{SF}$. $n=1$.
3. $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: $\text{Fe}^{2+}$ ($d^6$), $\text{WF}$. $n=4$.
Order $0<1<4$ is increasing. Statement II is Correct.
Given below are two statements regarding conformations of n-butane. Choose the correct option. 
Consider a weak base \(B\) of \(pK_b = 5.699\). \(x\) mL of \(0.02\) M HCl and \(y\) mL of \(0.02\) M weak base \(B\) are mixed to make \(100\) mL of a buffer of pH \(=9\) at \(25^\circ\text{C}\). The values of \(x\) and \(y\) respectively are
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.