Question:

Statement-I Among $\text{V}_2\text{O}_5, [\text{TiF}_6]^{2-}, [\text{Fe}(\text{CN})_6]^{3-}, [\text{CoF}_6]^{3-}$ paramagnetic species are three in number. Statement-II Increasing number of unpaired electrons in the following: $[\text{Fe}(\text{CN})_6]^{4-}<[\text{Fe}(\text{CN})_6]^{3-}<[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$.

Show Hint

In Crystal Field Theory, the number of unpaired electrons determines paramagnetism. Always be cautious of possible typos in compound formulas and verify spin states based on ligand field strength.
Updated On: Jan 24, 2026
  • Both statements are correct
  • Statement-I is correct ; statement-II is incorrect
  • Statement-I is incorrect statement-II is correct
  • Both statements are incorrect
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Statement I: Paramagnetic species have unpaired electrons ($n>0$).
1. $\text{V}_2\text{O}_5$: $\text{V}^{5+}$ ($d^0$), $n=0$. 
2. $[\text{TiF}_6]^{2-}$: $\text{Ti}^{4+}$ ($d^0$), $n=0$. (Assuming $\text{Ti}^{3+}$ as intended: $d^1, n=1$). 
3. $[\text{Fe}(\text{CN})_6]^{3-}$: $\text{Fe}^{3+}$ ($d^5$), $\text{SF}$. $n=1$. 
4. $[\text{CoF}_6]^{3-}$: $\text{Co}^{3+}$ ($d^6$), $\text{WF}$. $n=4$. 
Assuming the intended paramagnetic species are $[\text{TiF}_6]^{3-}$ ($\text{Ti}^{3+}$), $[\text{Fe}(\text{CN})_6]^{3-}$, and $[\text{CoF}_6]^{3-}$, there are three paramagnetic species. Statement I is Correct. 
Statement II: Unpaired electrons count ($n$): 
1. $[\text{Fe}(\text{CN})_6]^{4-}$: $\text{Fe}^{2+}$ ($d^6$), $\text{SF}$. $n=0$. 
2. $[\text{Fe}(\text{CN})_6]^{3-}$: $\text{Fe}^{3+}$ ($d^5$), $\text{SF}$. $n=1$. 
3. $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: $\text{Fe}^{2+}$ ($d^6$), $\text{WF}$. $n=4$. 
Order $0<1<4$ is increasing. Statement II is Correct. 

Was this answer helpful?
0
0