Statement 1:
Consider the expression:
\[
2^{513}+2^{013}+8^{13}+3^{13}
\]
Note that:
\[
8^{13} = (2^3)^{13} = 2^{39}
\]
Working modulo \(7\):
\[
2^3 \equiv 1 \pmod{7}
\Rightarrow 2^{3k} \equiv 1 \pmod{7}
\]
\[
2^{513} = 2^{3\cdot171} \equiv 1,\quad
2^{013} = 2^{13} = 2^{3\cdot4+1} \equiv 2,\quad
2^{39} = 2^{3\cdot13} \equiv 1
\]
Also,
\[
3^6 \equiv 1 \pmod{7}
\Rightarrow 3^{13} = 3^{6\cdot2+1} \equiv 3
\]
Adding all:
\[
1+2+1+3 = 7 \equiv 0 \pmod{7}
\]
Hence, Statement 1 is correct
.
Statement 2:
\[
(7+4\sqrt{3})^{25}
\]
Let:
\[
a = 7+4\sqrt{3}, \quad b = 7-4\sqrt{3}
\]
Then:
\[
ab = 49-48 = 1 \Rightarrow b=\frac{1}{a}
\]
Using binomial symmetry:
\[
a^{25}+b^{25} \in \mathbb{Z}
\]
Also,
\[
0<b^{25}<1
\Rightarrow \lfloor a^{25} \rfloor = a^{25}+b^{25}-1
\]
Since \(a^{25}+b^{25}\) is an integer and odd (sum of odd powers of conjugates),
\[
\lfloor (7+4\sqrt{3})^{25} \rfloor \text{ is odd}
\]
Thus, Statement 2 is also correct
.
Final Conclusion:
Both statements are correct.
\[
\boxed{\text{Option (1)}}
\]