Step 1: For a first order reaction:
\[
\ln\left(\frac{N_0}{N}\right) = kt
\]
Given:
\[
N_0 = 100\ \text{g}, \quad N = 2.5\ \text{g}, \quad t = 5\ \text{years}
\]
Step 2: Calculate the rate constant \(k\):
\[
\ln\left(\frac{100}{2.5}\right) = k \times 5
\]
\[
\ln(40) = 5k
\]
\[
k = \frac{3.689}{5} = 0.738\ \text{year}^{-1}
\]
Step 3: Amount left after 1 year:
\[
N = N_0 e^{-kt}
\]
\[
N = 100 \, e^{-0.738 \times 1}
\]
\[
N \approx 100 \times 0.478 = 47.8\ \text{g}
\]
Step 4: Time required for half of the substance to decay (half-life):
\[
t_{1/2} = \frac{0.693}{k}
\]
\[
t_{1/2} = \frac{0.693}{0.738}
\]
\[
t_{1/2} \approx 0.94\ \text{years}
\]