Let \( u = x^2 + y^2 \).
\[ \frac{du}{dx} = 2x + 2y \frac{dy}{dx} \Rightarrow y \frac{dy}{dx} = \frac{1}{2} \frac{du}{dx} - x. \] Substitute:
\[ x + \left( \frac{1}{2} \frac{du}{dx} - x \right) = \sec u \Rightarrow \frac{1}{2} \frac{du}{dx} = \sec u \Rightarrow \frac{du}{dx} = 2 \sec u. \] \[ \int \cos u \, du = \int 2 \, dx \Rightarrow \sin u = 2x + c. \] \[ \sin (x^2 + y^2) = 2x + c. \] Answer: \( \sin (x^2 + y^2) = 2x + c \).
Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.