Step 1: Condition for infinite solutions.
For infinite solutions, the third equation must be a linear combination of the first two equations.
Let
\[
\lambda (x + 2y + 2z = 1)
+
\mu (2x + 3y + 2z = 2)
=
ax + 5y + bz = b.
\]
Step 2: Equate coefficients.
Coefficient of $x$:
\[
\lambda + 2\mu = a.
\]
Coefficient of $y$:
\[
2\lambda + 3\mu = 5.
\]
Coefficient of $z$:
\[
2\lambda + 2\mu = b.
\]
Constant term:
\[
\lambda(1) + \mu(2) = b.
\]
Step 3: Solve for $\lambda, \mu$.
From $y$-coefficient:
\[
2\lambda + 3\mu = 5.
\]
From constant equation:
\[
\lambda + 2\mu = b.
\]
Also from $z$-coefficient:
\[
2\lambda + 2\mu = b.
\]
Now compare last two equations:
Multiply $\lambda + 2\mu = b$ by 2:
\[
2\lambda + 4\mu = 2b.
\]
But we also have:
\[
2\lambda + 2\mu = b.
\]
Subtracting:
\[
(2\lambda + 4\mu) - (2\lambda + 2\mu)
= 2b - b.
\]
\[
2\mu = b.
\]
\[
b = 2\mu.
\]
Substitute in $2\lambda + 2\mu = b$:
\[
2\lambda + 2\mu = 2\mu.
\]
\[
2\lambda = 0.
\]
\[
\lambda = 0.
\]
Step 4: Find $\mu$.
From
\[
2\lambda + 3\mu = 5.
\]
Since $\lambda=0$:
\[
3\mu = 5.
\]
\[
\mu = \frac{5}{3}.
\]
Thus,
\[
b = 2\mu = \frac{10}{3}.
\]
Step 5: Find $a$.
\[
a = \lambda + 2\mu
= 0 + 2\left(\frac{5}{3}\right)
= \frac{10}{3}.
\]
Step 6: Final Answer.
\[
a = \frac{10}{3}, \quad b = \frac{10}{3}.
\]
\[
\boxed{
a + b = \frac{20}{3}
}.
\]