We use the Ratio Test to find the radius of convergence.
Let
\[
a_n = \frac{\binom{n}{6}^2}{(2n)!}
\]
Then the given series is
\[
\sum a_n x^n
\]
Step 1: Apply the Ratio Test.
\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x|
\]
Now,
\[
\frac{a_{n+1}}{a_n}
=
\frac{\binom{n+1}{6}^2}{(2n+2)!}
\cdot
\frac{(2n)!}{\binom{n}{6}^2}
\]
Step 2: Simplify the binomial ratio.
For large \( n \),
\[
\binom{n}{6}
=
\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!}
\]
So asymptotically,
\[
\binom{n}{6} \sim \frac{n^6}{6!}
\]
Thus,
\[
\binom{n}{6}^2 \sim C n^{12}
\]
for some constant \( C \).
Step 3: Use factorial growth comparison.
We know
\[
(2n+2)! = (2n+2)(2n+1)(2n)!
\]
So,
\[
\frac{(2n)!}{(2n+2)!}
=
\frac{1}{(2n+2)(2n+1)}
\]
As \( n \to \infty \),
\[
(2n+2)(2n+1) \sim 4n^2
\]
Thus,
\[
\frac{a_{n+1}}{a_n}
\sim
\frac{(n+1)^{12}}{n^{12}}
\cdot
\frac{1}{4n^2}
\]
As \( n \to \infty \),
\[
\frac{(n+1)^{12}}{n^{12}} \to 1
\]
Hence,
\[
\frac{a_{n+1}}{a_n}
\sim
\frac{1}{4n^2}
\]
Step 4: Take the limit.
\[
\lim_{n \to \infty}
\left|
\frac{a_{n+1}}{a_n}
\right|
=
0
\]
Thus,
\[
\lim_{n \to \infty}
\left|
\frac{a_{n+1}}{a_n}
\right| |x|
=
0
\]
for every finite \( x \).
Conclusion:
Since the limit is zero for all \( x \), the series converges for every real number.
Final Answer:
\[
\boxed{R = \infty}
\]