Step 1: Understanding the Concept:
We can solve a system of linear equations by representing it in the matrix form \( AX = B \), where A is the coefficient matrix, X is the variable matrix, and B is the constant matrix. The solution is then found using the formula \( X = A^{-1}B \).
Step 2: Key Formula or Approach:
1. Rewrite the equations in standard form and express the system as \( AX = B \).
2. Find the inverse of the coefficient matrix A.
3. Multiply \( A^{-1} \) by B to find the solution matrix X.
Step 3: Detailed Explanation or Calculation:
1. Formulate the matrix equation:
First, rewrite the third equation in standard form: \( x + z = 2y → x - 2y + z = 0 \).
The system is:
\( x + y + z = 6 \)
\( 0x + y + 3z = 11 \)
\( x - 2y + z = 0 \)
In matrix form \( AX = B \):
\[ A = \begin{bmatrix} 1 & 1 & 1
0 & 1 & 3
1 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} x
y
z \end{bmatrix}, B = \begin{bmatrix} 6
11
0 \end{bmatrix} \]
2. Find the inverse of A:
First, find the determinant of A:
\[ |A| = 1(1 - (-6)) - 1(0 - 3) + 1(0 - 1) = 7 + 3 - 1 = 9 \]
Next, find the adjugate of A. The cofactor matrix is:
\[ C = \begin{bmatrix} 7 & 3 & -1
-3 & 0 & 3
2 & -3 & 1 \end{bmatrix} \]
\[ \text{adj}(A) = C^T = \begin{bmatrix} 7 & -3 & 2
3 & 0 & -3
-1 & 3 & 1 \end{bmatrix} \]
The inverse is:
\[ A^{-1} = \frac{1}{|A|} \text{adj}(A) = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2
3 & 0 & -3
-1 & 3 & 1 \end{bmatrix} \]
3. Solve for X:
\[ X = A^{-1}B = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2
3 & 0 & -3
-1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6
11
0 \end{bmatrix} \]
\[ X = \frac{1}{9} \begin{bmatrix} (7)(6) + (-3)(11) + (2)(0)
(3)(6) + (0)(11) + (-3)(0)
(-1)(6) + (3)(11) + (1)(0) \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 42 - 33
18
-6 + 33 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9
18
27 \end{bmatrix} \]
\[ X = \begin{bmatrix} 1
2
3 \end{bmatrix} \]
Step 4: Final Answer:
The solution is \( x = 1, y = 2, z = 3 \).