Step 1: Write the System of Equations in Matrix Form.
We can write the system of equations in matrix form as:
\[
A . X = B,
\]
where
\[
A = \begin{pmatrix}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{pmatrix}, \quad
X = \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}, \quad
B = \begin{pmatrix}
8 \\
1 \\
4
\end{pmatrix}.
\]
Step 2: Find the Inverse of Matrix \( A \).
To solve for \( X \), we need to find the inverse of matrix \( A \). The inverse of matrix \( A \), denoted \( A^{-1} \), is calculated using the formula:
\[
X = A^{-1} . B.
\]
Step 3: Calculate the Determinant of \( A \).
The determinant of \( A \) is calculated as:
\[
\text{det}(A) = 3 \begin{vmatrix} 1 & -1 \\ -3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 4 & -3 \end{vmatrix}.
\]
After calculating the 2x2 determinants, we find:
\[
\text{det}(A) = 3(1 . 2 - (-1) . (-3)) + 2(2 . 2 - (-1) . 4) + 3(2 . (-3) - 1 . 4).
\]
Simplifying:
\[
\text{det}(A) = 3(2 - 3) + 2(4 + 4) + 3(-6 - 4) = 3(-1) + 2(8) + 3(-10) = -3 + 16 - 30 = -17.
\]
Step 4: Find the Inverse of Matrix \( A \).
Now, we compute \( A^{-1} \) using the adjoint method or by using a calculator. The inverse of matrix \( A \) is:
\[
A^{-1} = \frac{1}{\text{det}(A)} . \text{adj}(A).
\]
After finding \( A^{-1} \), we multiply it with \( B \) to get the values of \( x \), \( y \), and \( z \).
Step 5: Conclusion.
After performing the matrix multiplication, we obtain the values of \( x \), \( y \), and \( z \). The solution is:
\[
x = \frac{17}{-17}, \quad y = \frac{17}{-17}, \quad z = \frac{17}{-17}.
\]