Given:
We are given the system of equations:
\[
(1)\quad 101x + 102y = 304\\
(2)\quad 102x + 101y = 305
\]
We will solve this system algebraically using the method of elimination.
Step 1: Subtract equation (1) from equation (2)
Subtracting (1) from (2):
\[
(102x + 101y) - (101x + 102y) = 305 - 304\\
(102x - 101x) + (101y - 102y) = 1\\
x - y = 1 \quad \text{...(3)}
\]
Step 2: Express one variable in terms of the other
From equation (3): \( x = y + 1 \)
Step 3: Substitute into equation (1)
Substitute \( x = y + 1 \) into equation (1):
\[
101(y + 1) + 102y = 304\\
101y + 101 + 102y = 304\\
(101y + 102y) + 101 = 304\\
203y + 101 = 304
\]
Step 4: Solve for \( y \)
\[
203y = 304 - 101 = 203\\
y = \frac{203}{203} = 1
\]
Step 5: Find \( x \)
From equation (3): \( x = y + 1 = 1 + 1 = 2 \)
Final Answer:
\[
\boxed{x = 2,\quad y = 1}
\]