1. Plot the constraints:
- Line 1: \( x + y = 800 \).
- Line 2: \( 2x + y = 1000 \).
- Line 3: \( x = 400 \).
2. Shade the feasible region:
The feasible region is the intersection of these constraints in the first quadrant.
3. Vertices of the feasible region:
- Intersection of \( x + y = 800 \) and \( 2x + y = 1000 \): Solve:
\[
x + y = 800 \quad {and} \quad 2x + y = 1000.
\]
Subtract the first equation from the second:
\[
x = 200, \quad y = 600.
\]
Thus, the vertex is \( (200, 600) \).
- Intersection of \( x = 400 \) and \( 2x + y = 1000 \): Substitute \( x = 400 \):
\[
2(400) + y = 1000 \quad \Rightarrow \quad y = 200.
\]
Thus, the vertex is \( (400, 200) \).
- Intersection of \( x = 400 \) and \( x + y = 800 \): Substitute \( x = 400 \):
\[
400 + y = 800 \quad \Rightarrow \quad y = 400.
\]
Thus, the vertex is \( (400, 400) \).
4. Evaluate \( z = 4x + 3y \):
- At \( (200, 600) \): \( z = 4(200) + 3(600) = 800 + 1800 = 2600 \).
- At \( (400, 200) \): \( z = 4(400) + 3(200) = 1600 + 600 = 2200 \).
- At \( (400, 400) \): \( z = 4(400) + 3(400) = 1600 + 1200 = 2800 \).
5. Conclusion:
The maximum value of \( z \) is \( \mathbf{2600} \) at \( \mathbf{(200, 600)} \).
Final Answer:
The maximum value of \( z \) is \( 2600 \) at \( (200, 600) \).