Rewrite: \( y \frac{dy}{dx} = -x \).
\[ y \, dy = -x \, dx. \] Integrate both sides:
\[ \int y \, dy = \int -x \, dx. \] \[ \frac{y^2}{2} = -\frac{x^2}{2} + c \Rightarrow y^2 = -x^2 + 2c \Rightarrow x^2 + y^2 = 2c. \] Let \( 2c = k \), where \( k \) is a positive constant:
\[ x^2 + y^2 = k. \] Answer: \( x^2 + y^2 = k \).
Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.