Rearrange the terms:
\[
\cos{x} \cos{y} \, dy = \sin{x} \sin{y} \, dx
\]
Divide both sides by \( \cos{x} \cos{y} \) and \( \sin{x} \sin{y} \):
\[
\frac{dy}{\sin{y}} = \frac{dx}{\cos{x}}
\]
Integrating both sides:
\[
\int \frac{dy}{\sin{y}} = \int \frac{dx}{\cos{x}}
\]
The integral of \( \frac{1}{\sin{y}} \) is \( \ln|\tan{\frac{y}{2}}| \), and the integral of \( \frac{1}{\cos{x}} \) is \( \ln|\sec{x}| \).
Thus, we get:
\[
\ln|\tan{\frac{y}{2}}| = \ln|\sec{x}| + C
\]
Exponentiate both sides to remove the logarithms:
\[
|\tan{\frac{y}{2}}| = C_1 |\sec{x}|
\]
Finally, we can solve for \( y \), but this equation gives the general solution to the differential equation.