The given system of equations can be written in the form of AX = B, where
A=\(\begin{vmatrix} 2 &-1 \\ 3& 4 \end{vmatrix}\), X=\(\begin{vmatrix} x \\ y \end{vmatrix}\)and B=\(\begin{vmatrix} -2 \\ 3 \end{vmatrix}\)
\(Now |A|=8+3=11≠0\)
Thus, A is non-singular. Therefore, its inverse exists.
Now,
A-1=\(\frac{1}{|A|}\)adjA=\(\frac{1}{11}\)\(\begin{vmatrix} 4 &1 \\ -3& 2 \end{vmatrix}\)
so X=A-1B=\(\frac{1}{11}\)\(\begin{vmatrix} 4 &1 \\ -3& 2 \end{vmatrix}\)\(\begin{vmatrix} -2 \\ 3 \end{vmatrix}\)
\(\Rightarrow \begin{vmatrix} x \\ y \end{vmatrix}=\frac{1}{11}\begin{vmatrix} -8+3 \\ 6+6 \end{vmatrix}=\frac{1}{11}\begin{vmatrix} -5 \\ 12 \end{vmatrix}\)=\(\begin{vmatrix} -\frac{5}{11} \\ \frac{12}{11} \end{vmatrix}\)
Hence x=\(-\frac{5}{11}\) and y=\(\frac{12}{11}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)