Concept:
Elevation in boiling point is a colligative property and is given by:
\[
\Delta T_b = i K_b m
\]
where
\(i\) = van’t Hoff factor,
\(m\) = molality of the solution.
Thus, \(\Delta T_b \propto i \times m\).
Step 1: Calculate Molality of Each Solution
(1) Glucose (non-electrolyte, \(i=1\))
Moles of glucose:
\[
\frac{2.025}{180} = 0.01125\,\text{mol}
\]
Mass of solvent:
\[
125\,\text{mL} \approx 0.125\,\text{kg}
\]
\[
m = \frac{0.01125}{0.125} = 0.09
\]
\[
i \times m = 0.09
\]
(2) Urea (non-electrolyte, \(i=1\))
Moles of urea:
\[
\frac{9}{60} = 0.15\,\text{mol}
\]
Mass of solvent:
\[
500\,\text{mL} = 0.5\,\text{kg}
\]
\[
m = \frac{0.15}{0.5} = 0.30
\]
\[
i \times m = 0.30
\]
(3) CaCl$_2$ (strong electrolyte, \(i=3\))
Moles of CaCl$_2$:
\[
\frac{1.9}{111} \approx 0.0171\,\text{mol}
\]
Mass of solvent:
\[
250\,\text{mL} = 0.25\,\text{kg}
\]
\[
m = \frac{0.0171}{0.25} \approx 0.0684
\]
\[
i \times m \approx 3 \times 0.0684 = 0.205
\]
(4) Al$_2$(SO$_4$)$_3$ (strong electrolyte, \(i=5\))
Moles of Al$_2$(SO$_4$)$_3$:
\[
\frac{20.5}{342} \approx 0.06\,\text{mol}
\]
Mass of solvent:
\[
750\,\text{mL} = 0.75\,\text{kg}
\]
\[
m = \frac{0.06}{0.75} = 0.08
\]
\[
i \times m = 5 \times 0.08 = 0.40
\]
Step 2: Compare \(i \times m\)
\[
\text{Al}_2(\text{SO}_4)_3\ (0.40)>\text{Urea}\ (0.30)>\text{CaCl}_2\ (0.205)>\text{Glucose}\ (0.09)
\]
Final Conclusion:
\[
\boxed{\text{Al}_2(\text{SO}_4)_3>\text{Urea}>\text{CaCl}_2>\text{Glucose}}
\]