Step 1: Analyze statement A.
Pyrite (FeS\(_2\)) is a sulfide mineral. When exposed to air and water, it oxidizes to form sulfuric acid (H\(_2\)SO\(_4\)), a strong acid. This process, known as acid mine drainage, drastically increases soil and water acidity. Statement A is a cause of acidity.
Step 2: Analyze statement B.
The primary process for extracting aluminum (Bayer process) involves digesting bauxite ore in a hot solution of sodium hydroxide (a strong base). The waste product, red mud, is highly alkaline, not acidic. Statement B is not a cause of acidity.
Step 3: Analyze statement C.
Ammonium-based nitrogen fertilizers can cause soil acidity through nitrification. Soil bacteria convert ammonium (NH\(_4^+\)) to nitrate (NO\(_3^-\)), releasing hydrogen ions (H\(^+\)) in the process, which lowers the soil pH. Statement C is a cause of acidity.
Step 4: Analyze statement D.
Limestone is calcium carbonate (CaCO\(_3\)). It is an alkaline material used to neutralize soil acidity by reacting with H\(^+\) ions. It is a treatment for acidity, not a cause. Statement D is not a cause of acidity.
Conclusion: A and C are causes of soil acidity.
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List-I (Soil component)} & \text{List-II (Definition)} \\ \hline (A)~\text{Azonal soils} & (I)~\text{An individual natural aggregate of soil particles.} \\ (B)~\text{Regoliths} & (II)~\text{Organisms living in the soil or ground} \\ (C)~\text{Ped} & (III)~\text{Soils have uniformity from the top-surface to the base, and do not have well-developed soil horizons.} \\ (D)~\text{Edaphons} & (IV)~\text{Zone of loose and unconsolidated weathered rock materials.} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List I Content of humus} & \text{List II Percentage of contents} \\ \hline \text{(A) Carbon} & \text{(I) 35-40\%} \\ \hline \text{(B) Oxygen} & \text{(II) ~5\%} \\ \hline \text{(C) Hydrogen} & \text{(III) 55-60\%} \\ \hline \text{(D) Nitrogen} & \text{(IV) 15\%} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match the LIST-I (Spectroscopy) with LIST-II (Application)
LIST-I | LIST-II |
---|---|
A. Visible light spectroscopy | III. Identification on the basis of color |
B. Fluorescence spectroscopy | IV. Identification on the basis of fluorophore present |
C. FTIR spectroscopy | I. Identification on the basis of absorption in infrared region |
D. Mass Spectroscopy | II. Identification on the basis of m/z ion |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Forensic Psychiatry | III. Behavioural pattern of criminal |
B. Forensic Engineering | IV. Origin of metallic fracture |
C. Forensic Odontology | I. Bite marks analysis |
D. Computer Forensics | II. Information derived from digital devices |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Calvin Goddard | II. Forensic Ballistics |
B. Karl Landsteiner | III. Blood Grouping |
C. Albert Osborn | IV. Document examination |
D. Mathieu Orfila | I. Forensic Toxicology |
Match the LIST-I (Evidence, etc.) with LIST-II (Example, Construction etc.)
LIST-I | LIST-II |
---|---|
A. Biological evidence | IV. Blood |
B. Latent print evidence | III. Fingerprints |
C. Trace evidence | II. Soil |
D. Digital evidence | I. Cell phone records |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Ridges | III. The raised portion of the friction skin of the fingers |
B. Type Lines | I. Two most inner ridges which start parallel, diverge and surround or tend to surround the pattern area |
C. Delta | IV. The ridge characteristics nearest to the point of divergence of type lines |
D. Enclosure | II. A single ridge bifurcates and reunites to enclose some space |