Question:

\(\sin^{-1}x+\sin^{-1}y=\) (principal values)

Show Hint

Convert inverse sines to angles, use $\sin(\alpha+\beta)$, then return via $\sin^{-1}$.
  • \(\sin^{-1}\!\left(x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}}\right)\)
  • \(\sin^{-1}\!\left(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}\right)\)
  • \(\sin^{-1}\!\left(x\sqrt{1+y^{2}}+y\sqrt{1+x^{2}}\right)\)
  • \(\sin^{-1}\!\left(x\sqrt{1+y^{2}}-y\sqrt{1+x^{2}}\right)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let \(\alpha=\sin^{-1}x,\ \beta=\sin^{-1}y\Rightarrow \sin\alpha=x,\ \sin\beta=y\) with \(\alpha,\beta\in[-\pi/2,\pi/2]\). Then \[ \sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta =x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}. \] Since \(\alpha+\beta\) lies in \([-\pi,\pi]\) and under usual exam assumptions \(\alpha+\beta\in[-\pi/2,\pi/2]\), we write \(\alpha+\beta=\sin^{-1}\!\big(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}\big)\).
Was this answer helpful?
0
0