Let \(\alpha=\sin^{-1}x,\ \beta=\sin^{-1}y\Rightarrow \sin\alpha=x,\ \sin\beta=y\) with \(\alpha,\beta\in[-\pi/2,\pi/2]\).
Then
\[
\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta
=x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}.
\]
Since \(\alpha+\beta\) lies in \([-\pi,\pi]\) and under usual exam assumptions \(\alpha+\beta\in[-\pi/2,\pi/2]\), we write
\(\alpha+\beta=\sin^{-1}\!\big(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}\big)\).