The correct answer is \(=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}\) Let \(y=sin^{-1}(x\sqrt{x})\) Using chain rule,we obtain \(\frac{dy}{dx}=\frac{d}{dx}(sin^{-1}(x\sqrt{x}))\) \(=\frac{1}{\sqrt{1-(x\sqrt{x})^2}}\times\frac{d}{dx}(x\sqrt{x})\) \(=\frac{1}{\sqrt{1-x^3}}.\frac{d}{dx}(x^{\frac{3}{2}})\) \(=\frac{1}{\sqrt{1-x^3}}\times\frac{3}{2}.x^{\frac{1}{2}}\) \(=\frac{3\sqrt{x}}{2\sqrt{1-x^3}}\) \(=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}\)