Show that the function given by \(f(x)=e^{2x}\) is strictly increasing on R.
Let x1 and x2 be any two numbers in R.
Then, we have:
x1<x2 \(⇒\) 2x1<2x2 \(⇒\) e2x1<e2x2 \(⇒\) f(x1)<f(x2)
Hence, f is strictly increasing on R.
The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 2+x, & \text{if } x \geq 0 \\ 2-x, & \text{if } x \leq 0 \end{cases} \] Then function \( f(x) \) at \( x=0 \) is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Differentiability of a function A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a
\(\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
⇒ f'(a – 0) = f'(a + 0)
⇒ left-hand derivative = right-hand derivative.
Thus function f is said to be differentiable if left hand derivative & right hand derivative both exist finitely and are equal.
If f(x) is differentiable then its graph must be smooth i.e. there should be no break or corner.
Note:
(i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability ⇒ continuity but continuity ⇏ differentiability
(ii) For any curve y = f(x), if at any point \(\frac{d y}{d x}\) = 0 or does not exist then, the point is called “critical point”.
3. Differentiability in an interval
(a) A function fx) is said to be differentiable in an open interval (a, b), if it is differentiable at every point of the interval.
(b) A function f(x) is differentiable in a closed interval [a, b] if it is