To find the area of a parallelogram, we use the formula for the magnitude of the cross product of two vectors:
\[
\text{Area} = \frac{1}{2} | \vec{a} \times \vec{b} |.
\]
Now, given the diagonals \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \) and \( \vec{b} = \hat{i} + 3\hat{j} - \hat{k} \), we compute the cross product:
\[
\vec{a} \times \vec{b} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 1 \\
1 & 3 & -1
\end{vmatrix} = \hat{i} \begin{vmatrix} -1 & 1
3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1
1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1
1 & 3 \end{vmatrix}.
\]
After calculating the determinants, we get:
\[
\vec{a} \times \vec{b} = 2\hat{i} + 3\hat{j} + 7\hat{k}.
\]
Thus, the magnitude of the cross product is:
\[
|\vec{a} \times \vec{b}| = \sqrt{2^2 + 3^2 + 7^2} = \sqrt{4 + 9 + 49} = \sqrt{62}.
\]
Therefore, the area of the parallelogram is:
\[
\text{Area} = \frac{1}{2} \sqrt{62}.
\]