We are given the lines and need to find a line that is perpendicular to both.
The direction vectors of the given lines are:
\[
\vec{d_1} = \langle 3, -16, 7 \rangle \quad \text{and} \quad \vec{d_2} = \langle 3, 8, -5 \rangle.
\]
The direction vector of the required line is the cross product of \( \vec{d_1} \) and \( \vec{d_2} \):
\[
\vec{d} = \vec{d_1} \times \vec{d_2}.
\]
We compute the cross product:
\[
\vec{d} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & -16 & 7 \\
3 & 8 & -5
\end{vmatrix} = \hat{i} \begin{vmatrix} -16 & 7
8 & -5 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 7
3 & -5 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -16
3 & 8 \end{vmatrix}.
\]
After calculating the determinants, we get:
\[
\vec{d} = \langle -51, -6, 69 \rangle.
\]
The equation of the line in vector form is:
\[
\vec{r} = \vec{r_0} + \lambda \vec{d},
\]
where \( \vec{r_0} = \langle 1, 2, -4 \rangle \) and \( \vec{d} = \langle -51, -6, 69 \rangle \).
Hence, the equation of the line is:
\[
\vec{r} = \langle 1, 2, -4 \rangle + \lambda \langle -51, -6, 69 \rangle.
\]
In Cartesian form, the equation is:
\[
\frac{x - 1}{-51} = \frac{y - 2}{-6} = \frac{z + 4}{69}.
\]