Step 1: Differentiate \( f(x) \).
The given function is:
\[
f(x) = e^x - e^{-x} + x - \tan^{-1} x.
\]
Differentiate term by term:
\[
f'(x) = \frac{d}{dx} (e^x) - \frac{d}{dx} (e^{-x}) + \frac{d}{dx} (x) - \frac{d}{dx} (\tan^{-1} x).
\]
This gives:
\[
f'(x) = e^x + e^{-x} + 1 - \frac{1}{1 + x^2}.
\]
Step 2: Prove \( f'(x)>0 \).
Combine terms:
\[
f'(x) = e^x + e^{-x} + \frac{x^2}{1 + x^2}.
\]
Since \( e^x>0 \), \( e^{-x}>0 \), and \( \frac{x^2}{1 + x^2}>0 \) for all \( x \), it follows that:
\[
f'(x)>0 \quad \text{for all } x.
\]
Step 3: Conclusion.
Since \( f'(x)>0 \) for all \( x \), the function \( f(x) \) is strictly increasing in its domain:
\[
\boxed{\text{strictly increasing.}}
\]