Step 1: Test if \( f(x) \) is one-one.
For a function to be one-one, \( f(x_1) = f(x_2) \) should imply \( x_1 = x_2 \). Consider:
\[
f(x) = \frac{2x}{1 + x^2}.
\]
Let \( f(x_1) = f(x_2) \):
\[
\frac{2x_1}{1 + x_1^2} = \frac{2x_2}{1 + x_2^2}.
\]
Cross-multiply:
\[
2x_1 (1 + x_2^2) = 2x_2 (1 + x_1^2).
\]
Simplify:
\[
x_1 + x_1x_2^2 = x_2 + x_2x_1^2.
\]
Rearranging terms:
\[
x_1 - x_2 = x_2x_1^2 - x_1x_2^2.
\]
Factorize:
\[
(x_1 - x_2)(1 + x_1x_2) = 0.
\]
Thus, either \( x_1 = x_2 \) or \( 1 + x_1x_2 = 0 \). The second case implies \( x_1x_2 = -1 \), so \( f(x) \) is not one-one.
Step 2: Test if \( f(x) \) is onto.
For \( f(x) \) to be onto, every real number \( y \) should have a corresponding \( x \) such that:
\[
y = \frac{2x}{1 + x^2}.
\]
Rearrange for \( x \):
\[
y (1 + x^2) = 2x \quad \Rightarrow \quad y + yx^2 = 2x.
\]
Rearrange into a quadratic equation:
\[
yx^2 - 2x + y = 0.
\]
The discriminant of this quadratic is:
\[
\Delta = (-2)^2 - 4(y)(y) = 4 - 4y^2 = 4(1 - y^2).
\]
For \( x \) to exist, \( \Delta \geq 0 \), which implies:
\[
1 - y^2 \geq 0 \quad \Rightarrow \quad -1 \leq y \leq 1.
\]
Thus, \( f(x) \) is not onto because its range is \( [-1, 1] \), not \( \mathbb{R} \).
Step 3: Find set \( A \) to make \( f(x) \) onto.
To make \( f(x) \) onto, let \( A = [-1, 1] \). Then, for every \( y \in A \), there exists an \( x \in \mathbb{R} \) such that:
\[
y = \frac{2x}{1 + x^2}.
\]
Conclusion:
The function \( f(x) = \frac{2x}{1 + x^2} \) is:
\[
\boxed{\text{Neither one-one nor onto.}}
\]
To make \( f(x) \) onto, let \( A = [-1, 1] \).