Step 1: For compounding semi-annually, the effective annual rate \( r_{{eff}} \) is calculated using the formula: \[ r_{{eff}} = \left(1 + \frac{r}{n}\right)^n - 1, \] where: - \( r \) is the nominal annual interest rate, - \( n \) is the number of compounding periods per year.
Step 2: Substitute the given values \( r = 0.10 \) (10%) and \( n = 2 \): \[ r_{{eff}} = \left(1 + \frac{0.10}{2}\right)^2 - 1 = (1.05)^2 - 1. \]
Step 3: Compute the value: \[ r_{{eff}} = 1.1025 - 1 = 0.1025 \quad {or} \quad 10.25\%. \]
| List-I | List-II |
| (A) Absolute maximum value | (I) 3 |
| (B) Absolute minimum value | (II) 0 |
| (C) Point of maxima | (III) -5 |
| (D) Point of minima | (IV) 4 |

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?