The equivalent capacitance of the circuit given between A and B is
The energy stored in the capacitor after closing the key K is
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is:
The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily calculate the total capacitance.
Read Also: Combination of Capacitors
When one terminal of a capacitor is connected to the terminal of another capacitors , called series combination of capacitors.
Capacitors can be connected in two types which are in series and in parallel. If capacitors are connected one after the other in the form of a chain then it is in series. In series, the capacitance is less.
When the capacitors are connected between two common points they are called to be connected in parallel.
When the plates are connected in parallel the size of the plates gets doubled, because of that the capacitance is doubled. So in a parallel combination of capacitors, we get more capacitance.
Read More: Types of Capacitors