समासानां तालिकापूर्ति कुरुत। समस्तपदं विग्रहः समासनाम
\[\begin{array}{|l|l|} \hline \textbf{समासनाम} & \textbf{विग्रहः} \\ \hline \text{(क) मातृसेवा} & \text{मातुः सेवा} \\ \hline \hline \text{(ख) मृगशृगालौ} & \text{इतरेतरद्वन्द्वः} \\ \hline \hline \text{(ग) परमः} & \text{अणुः} \\ \hline \hline \text{(घ) सकोपम्} & \text{कोपेण सह} \\ \hline \hline \text{(च) क्षुद्रबुद्धिः} & \text{बहुव्रीहिः} \\ \hline \end{array}\]
(क) मातृसेवा: This is a Samasa where "मातृ" means "mother" and "सेवा" means "service". The compound word मातृसेवा means "service to the mother."
(ख) मृगशृगालौ: This is a Dvandva Samasa, meaning a compound of two words joined by "और" (meaning "and"), in this case, referring to a "deer and a jackal."
(ग) परमः: This is a Karmadharaya Samasa, where "परमः" means "supreme" and "अणुः" means "atom". Thus, "परमाणु" means "atom".
(घ) सकोपम्: This is a Bahuvrihi Samasa, where "कोपेण" means "with anger" and "सह" means "together", giving us "sakope" meaning "one with anger".
(च) क्षुद्रबुद्धिः: This is a Bahuvrihi Samasa, where "क्षुद्र" means "small" and "बुद्धि" means "intellect", together forming क्षुद्रबुद्धि, meaning "small-minde d intellect".
‘क्रोधाग्नि’ समस्तपद का विग्रह करते हुए समास का नाम भी लिखिए।
'स्वाधीन' समस्त पद का व्याख्या करके भेद भी लिखिए।
प्रथमां सूचीं द्वितीयया सूच्या सह मेलयत ।
| सूची-I | सूची-II |
|---|---|
| (A) दम्पती | (I) बहुव्रीहि-समासः |
| (B) शोकपतितः | (II) द्वन्द्वः-समासः |
| (C) उपराजम् | (III) तत्पुरुषः-समासः |
| (D) चन्द्रशेखरः | (IV) अव्ययीभाव-समासः |
अधोलिखितेषु विकल्पेषु उचिततमम् उत्तरं चिनुत -
'त्रयाणां भुवनानां समाहारः' इत्यस्य समस्तपदम् अस्ति-
'राष्ट्रपतिः' इत्यस्य समस्तपदस्य विग्रहः अस्ति-
In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.